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ABSTRACT

The manner in which turbulence (especially turbulent pressure) affects the structure and stability of
luminous post–red-supergiant stars is critically evaluated by calculating both realistic and one-zone models
of the convective envelopes. In these stars, the remnant outer envelope closely approaches the Eddington
limit, with the result that the local gas densities are driven down. Such a tenuous environment promotes high
turbulent velocities in the marginally convective layers of the outer envelope. In the hydrogen and helium
convection zones, however, the velocities, even though high, fall well below sound velocity, and the
temperature gradient there is essentially radiative, making both the turbulent pressure and the turbulent
kinetic energy flux structurally unimportant. Instability is tested for by assuming that turbulence adapts
either slowly or rapidly to small perturbations, depending on the magnitude of the turbulent velocity.
Although the adiabatically stratified iron convection zone lies too deep below the surface to influence the
formal dynamical stability or instability of the outer envelope, radiative instability in this zone is increased if
supersonic turbulence occurs and generates energetic shocks or if convection is unable to transport all of the
super-Eddington luminous flux. It is concluded that turbulent pressure has no significant effect on the formal
dynamical instability of the outer envelope in yellow hypergiant stars and luminous blue variables (LBVs),
but it may significantly ease the requirement for radiative instability in the brightest and hottest LBVs and in
their close relatives, the hydrogen-poor WN stars. Since both dynamical instability and radiative instability
lead to a strong dynamical outflow of matter, the unresolved complications arising from supersonic
turbulence and from the consequent inapplicability of mixing-length theory render uncertain the predicted
domains of instability for the brightest and hottest stars.

Subject headings: stars: mass loss — stars: oscillations — stars: variables: other — stars: Wolf-Rayet —
turbulence

1. INTRODUCTION

A hot, massive, post–main-sequence star that has lost
most of its hydrogen-rich envelope presents a bloated
appearance owing to its enormous internal radiation pres-
sure. Inside a star like this resides a massive compact core
surrounded by little more than a huge bubble of blackbody
radiation. Since radiation pressure tends to decrease stellar
stability, the outer envelope (containing layers cooler than
�2� 105 K) hovers perpetually near the borderline of con-
vective, radiative, and dynamical instability (Stothers &
Chin 1983, 1993). Small contributions of atomic continuum
and line opacity, rising above the uniform electron-
scattering background that dominates in a low-density,
high-temperature environment, are able to tip the balance
in favor of any of these three major types of instability. In
addition, low-amplitude pulsational instabilities may also
be triggered by the tiny bumps of atomic opacity (Kiriaki-
dis, Fricke, & Glatzel 1993; Glatzel et al. 1999; Dorfi &
Gautschy 2000).

Whether low-amplitude pulsations can grow sufficiently
to eject matter (Langer et al. 1994; Guzik et al. 1997) is an
uncertain conjecture, because driving of any outbursts
probably depends on nearly quenching convection in the
iron opacity bump region of the star during certain phases
of the pulsation cycle. With convection nearly suppressed,
the local super-Eddington luminosity is then able to rapidly
expel the overlying layers. This outcome can happen even
without any pulsations if the stellar wind mass-loss rate is
high enough, because in that case the mass-loss acceleration

throughout the outer envelope reduces the effective gravity
so much that the luminosity can exceed the Eddington limit
in most of the outer envelope layers (Kato & Iben 1992;
Stothers 2002a).

The importance of the iron convection zone in hot mas-
sive stars should not obscure the fact that additional convec-
tion zones, arising from the partial ionizations of hydrogen
and helium, exist closer to the surface. Convection in these
very diffuse zones, however, is extremely inefficient at trans-
porting energy, which is therefore transferred almost
entirely by radiation. Sometimes these outer zones can be
adequately approximated as being purely radiative. Such an
assumption, however, is valid only if one ignores the
dynamical effects of convection. Application of mixing-
length theory shows that deep in the convection zones of the
hottest stars the mean velocity of turbulent elements
approaches the velocity of sound and can even become
supersonic if the effective gravity is low enough (Stothers
2002a). This produces a large local turbulent pressure,
which should not be ignored.

In the present paper, the effects of including turbulent
pressure in models of blue and yellow, massive, post–main-
sequence stars are investigated for the first time. The equili-
brium structure of the outer envelope, its radiative stability,
and its dynamical stability are considered. Observationally,
the models are expected to describe stars such as yellow
hypergiants, luminous blue variables (LBVs or S Doradus
variables), and hydrogen-poor Wolf-Rayet stars (WN
stars). These objects are taken here to be post–red-
supergiant stars, as discussed elsewhere (de Jager et al. 2001;
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Stothers & Chin 2001; Stothers 2002a). The alternative
interpretation, that they (or at least the most luminous of
them) have never been red supergiants, has been presented
by Langer et al. (1994), Pasquali et al. (1997), and Lamers
et al. (2001).

In xx 2 and 3 the equation of hydrostatic equilibrium and
the dynamical departures from equilibrium are treated in a
mathematically general way. Applications of the theory to
yellow hypergiants in x 4 and to extreme blue supergiants in
x 5 follow. Radiative instability arising from a super-
Eddington luminosity in the hottest supergiants is also dis-
cussed. A summary of our main results concludes the paper
in x 6.

2. HYDROSTATIC EQUILIBRIUM

In the simplest models of stellar convection zones, the
conventional equation of hydrostatic equilibrium (gra-
dient of the gas and radiation pressure balances the force
of gravity) is employed, and the total heat flux is taken
to be the sum of the radiative and convective heat fluxes.
All of the standard convective quantities, including the
true gradient of temperature, are evaluated from simple
mixing-length theory. Other turbulence phenomena—
which are traditionally ignored—introduce three addi-
tional terms into the basic equations: a turbulent pres-
sure, a turbulent kinetic energy flux, and a buoyancy
force (Canuto 1993).

The turbulent term that is most often referred to in the
literature is the turbulent pressure. This is given by

Pturb ¼ Cturb�v
2
turb ; ð1Þ

where � is the mass density, vturb is the mean turbulent veloc-
ity, and Cturb ¼ 1=3 for isotropic turbulence. Since the
buoyancy force is extremely small compared to gravity
under most conditions (V.M. Canuto 2002, private commu-
nication), it can be omitted. This leaves us with the turbulent
kinetic energy flux, which has to be added to the radiative
and convective fluxes in order to make up the total flux.
Although often substantial in size, the turbulent kinetic
energy flux, like the convective flux, plays no significant role
in determining the structure of a hot, luminous stellar enve-
lope. In the hydrogen and helium convection zones near the
surface, the density is so low that nearly all of the luminosity
is transported by radiation and therefore the temperature
gradient remains close to the radiative one. At greater
depths, in the iron convection zone, the temperature
gradient is essentially equal to the adiabatic one. The atomic
partial ionizations that cause convection to break out occur
at roughly the following temperatures: Hþ, 8� 103 K;
Heþ, 1:2� 104 K; Heþþ, 3� 104 K; and Fe ionization,
1:5� 105 K.

Thus, the structure of the stellar envelope will be signifi-
cantly affected by turbulence only through the turbulent
pressure in the equation of hydrostatic equilibrium. This
equation can be written

1

�

d

dr
ðPgas þ Prad þ PturbÞ ¼ �gþ f ; ð2Þ

where the density � is given by

� ¼ 1

4�r2
dMðrÞ
dr

; ð3Þ

g ¼ GMðrÞ=r2 is the gravitational acceleration, and f is the
stationary mass-loss acceleration of the outwardly moving
envelope (the stellar wind). In this paper we take
f =g ¼ constant for simplicity, an approximation that has
been justified elsewhere (Stothers 2002a).

Generally speaking, the envelope structure becomes
altered by the turbulent pressure in just one important
way. The additional pressure means that less gas and
radiation pressure is needed to balance gravity. The con-
sequence is a lower density (see also Stellingwerf 1976;
Jiang & Huang 1997). Another consideration is that, if
Pturb is treated thermodynamically as a component of the
total pressure P rather than hydrodynamically as a part
of the total work done against the effective gravity, the
adiabatic temperature gradient also becomes modified by
the turbulent pressure. Such a modification will affect the
envelope structure, but only in the deeper, adiabatic
layers, for an assigned set of surface parameters (M, L,
Te, etc.). In the next section, we consider these two
possible treatments of Pturb.

3. DYNAMICAL INSTABILITY

If the envelope is rapidly perturbed, the dynamical accel-
eration, d2r=dt2 (which is not to be confused with the sta-
tionary mass-loss acceleration due to the stellar wind, f ),
must be added to equation (2). The resulting equation of
motion is

d2r

dt2
¼ � 1

�

d

dr
ðPgas þ Prad þ PturbÞ � gþ f : ð4Þ

How should the turbulent pressure variations arising
from the imposed perturbation be treated? They can be
formally included either hydrodynamically (x 3.1) or
thermodynamically (x 3.2).

3.1. Slowly Adapting Turbulence

If turbulence reacts very slowly to the perturbation, it can
be assumed not to adjust at all. This will be the case if the
time taken by a turbulent element to move through a mixing
length l is very long compared to the equivalent time for a
sound wave to travel, in other words, if the ratio vturb=vsound
is very small. As an approximation, equation (4) can then be
rewritten

d2r

dt2
¼ � 1

�

dP

dr
� geff ; ð5Þ

with

P ¼ Pgas þ Prad ; ð6Þ

geff ¼ g� f þ 4�r2
dPturb

dMðrÞ : ð7Þ

Here Pturb, and therefore dPturb=dMðrÞ, is assumed to be
constant in time. In an actual stellar convection zone, Pturb

rises to a maximum from zero at both boundaries, and
therefore the sign of dPturb=dMðrÞ changes from negative to
positive in going downward through the zone.

Consider now a small radial perturbation of all the
variables, of the form r ¼ r0 þ �r expði�tÞ, where a zero sub-
script refers to the equilibrium state and � is a complex pul-
sation frequency. If the perturbations are purely adiabatic,
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as is appropriate for the consideration of dynamical insta-
bility (Stothers 1999), then �P=P0 ¼ �1��=�0. Introducing
the perturbed variables into equations (3) and (5) and
linearizing, we find

d2

dr2
�r

r

� �
þ 4� V þ C

r

� �
d

dr

�r

r

� �

þ V

�1r2

�
�2r3

GMðrÞ
g

geff

� �
� ð3�1 � 4Þ

þ4
Pturb

P

� �
d lnPturb

d lnP
þ 3�1C

V

�
�r

r
¼ 0 ; ð8Þ

where V ¼ �ðd lnPÞ=ðd ln rÞ, C ¼ ðd ln�1Þ=ðd ln rÞ, and
the zero subscripts have been dropped.

The necessary and sufficient condition for dynamical
instability is that �2 � 0, where � is the smallest eigen-
value for which �r=r is finite at the surface and zero at
the base of the envelope. To acquire a feel for how tur-
bulence affects dynamical instability under the constraint
of a very slow turbulent adaptation, consider the one-
zone model of a stellar envelope with a constant value of
�1. Then equation (8) immediately yields the equivalent
criterion,

�1 �
4

3
1þ Pturb

P

d lnPturb

d lnP

� �
: ð9Þ

Since the sign of dPturb=dP depends on what part of the
convection zone is being represented by the one-zone
model, the effect of turbulent pressure can be either stabi-
lizing or destabilizing. In the absence of turbulence, �1

must drop below a very small value, 4/3; this will nor-
mally be achieved by the partial ionizations of hydrogen
and helium, because a neutral or a fully ionized gas has
�1 ¼ 5=3 and blackbody radiation alone can bring �1

down only as far as 4/3. With turbulence included, the
maximum value of �1 to still have instability can thus be
either smaller or greater than 4/3.

The foregoing considerations suggest that it may be con-
venient to express the turbulent pressure as a ratio, Pturb=P.
To gain a more transparent representation, we use the ratio
of the mean turbulent velocity, vturb, to the adiabatic
velocity of sound,

vsound ¼ �1P

�

� �1=2

; ð10Þ

in other words theMach number, so that

Pturb

P
¼ Cturb�1

vturb
vsound

� �2

: ð11Þ

3.2. Rapidly Adapting Turbulence

A rapid response of turbulence to an imposed perturba-
tion might take any number of forms. As an extreme case,
we assume that the pressure and the specific kinetic energy
of the turbulent eddies behave thermodynamically like
those of a gas (not necessarily classical). Subject to certain
mathematical constraints, the thermodynamic relations for
turbulence can then be included with those for an ionizing
gas and for blackbody radiation to derive generalized
specific heats and generalized adiabatic exponents.

Under these circumstances, the equation of motion (eq.
[5]) applies if the following definitions are used:

P ¼ Pgas þ Prad þ Pturb ; ð12Þ

geff ¼ g� f : ð13Þ

Linearizing as before, we get

d2

dr2
�r

r

� �
þ 4� V þ C

r

� �
d

dr

�r

r

� �

þ V

�1r2
�2r3

GMðrÞ
g

geff

� �
� ð3�1 � 4Þ þ 3�1C

V

� �
�r

r
¼ 0 : ð14Þ

All of the turbulent effects have now been subsumed under
the generalized expression for �1, which contains the ratio
� ¼ Pturb=ðPgas þ PradÞ in addition to the usual ratio
� ¼ Pgas=ðPgas þ PradÞ (Stothers 2002b). Dynamical insta-
bility in the one-zone stellar envelope model occurs if
�1 � 4=3, which is unchanged from the usual criterion. For
the present case of rapidly adapting turbulence, we may
regard the turbulent eddies as behaving like a ‘‘ classical
gas ’’ and assign Cturb ¼ 1=3 and �T ¼ ð@ ln vturb=
@ lnTÞ� ¼ 1=2 in the generalized formula for �1. Since tur-
bulence for this case tends to increase �1 (because �1 ! 5=3
as � ! 1), its effect on the envelope will be a stabilizing one.

Although the ratio Pturb=P does not occur explicitly in
the above expressions, it can be represented in terms of
the Mach number by equations (10) and (11) with
P ¼ Pgas þ Prad þ Pturb.

It is clear from the general discussion of dynamical insta-
bility in this section that slowly adapting turbulence can be
either stabilizing or destabilizing, while rapidly adapting
turbulence is always stabilizing. In a star such as the Sun,
where the lifetime of a convective eddy is several weeks but
the pulsational timescale is only minutes, turbulence must
adapt very slowly. On the other hand, inside the iron con-
vection zone of a very blue LBV, turbulence is supersonic
and therefore must adapt very quickly. For an intermediate
situation in which the turbulent velocity approaches close
to, yet does not exceed, the velocity of sound, the choice is
not clear-cut. Other relevant factors include the total thick-
ness of the convection zone and the depth of the bottom of
the region affected by dynamical instability. A one-zone stel-
lar model is insufficient to treat these spatial factors. In the
next two sections, applications to realistic models of yellow
and blue luminous supergiants are made.

4. YELLOW HYPERGIANTS

Yellow hypergiants are thought to be stars that were for-
merly luminous red supergiants and are now attempting to
cross the Hertzsprung-Russell (H-R) diagram (de Jager
1998). Affected by a number of atmospheric and envelope
instabilities, they probably suffer most fundamentally
from classical dynamical instability in the outer envelope
(de Jager et al. 2001).

The blue edge of the theoretical region of dynamical
instability for yellow hypergiants has been calculated
previously without the inclusion of either turbulent pressure
or mass-loss acceleration in the stellar envelope (Stothers &
Chin 2001). Nevertheless, the predicted blue edge matches
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very well the observed edge of the domain of yellow
hypergiants. Why is this so?

The mass-loss acceleration is given by (Stothers 2002a)

f ¼ h

�M

dM

dt

� �2
R3g

GM
; ð15Þ

where h is taken to be a constant equal to 10. For stellar
models located along the blue edge, f turns out to be roughly
5 orders of magnitude smaller than g, primarily because the
mass of the outer envelope, �M, is very large for such cool
stars. These stars have �M=M ¼ 10�4 to 10�5, compared to
10�7 to 10�8 for LBVs. Therefore, f can be safely ignored in
calculating models for yellow hypergiants, and we set
f =g ¼ 0.

As for the turbulent pressure, a more careful analysis is
required. Four models of stellar envelopes lying along the
blue edge have been recomputed in order to evaluate the
effects of including Pturb in the case of slowly adapting tur-
bulence. The original stellar models come from our most
recent study (Stothers 2002a) and cover the luminosity
range logðL=L�Þ ¼ 5:5 6:1. Masses of the stars are 10.4,
15.4, 21.6, and 34:6 M�, or roughly one-third of the initial
masses of the stars on the main sequence.

Attention is first focused on the envelope model for a yel-
low hypergiant of 21:6 M� with logTe ¼ 3:97, as a typical
example. Figure 1 displays the interior progression with
temperature of four physical variables running from the
photosphere down into the iron opacity bump region.
Notice the rather flat distribution of the density that is inter-
rupted by two small inversions in the helium and iron con-
vection zones, caused by mild local maxima of the opacity
�. The ratio of the mean turbulent velocity to the adiabatic
sound velocity, vturb=vsound, is also shown. The turbulent
velocity has been computed by assuming vturb ¼ vconv, where
vconv is the mean convective velocity derived from standard
mixing-length theory (Böhm-Vitense 1958; Cox & Giuli
1968). We adopt a ratio of mixing length to local pressure
scale height, �P, equal to 1.4. Although this value of �P is
based on a calibration of the effective temperatures of very
luminous red supergiants (Stothers & Chin 1997), we take it
to apply also to very luminous yellow and blue supergiants.

If �P ¼ 1:4, then vturb=vsound remains below 0.01, 0.3, and
0.4 in the hydrogen, helium, and iron convection zones,
respectively. With Cturb ¼ 1=3, it is clear that Pturb stays
everywhere less than 7% of the combined pressure of gas
and radiation and also affects only a limited volume of the
outer envelope.

A smaller value of �P would imply less efficient convec-
tion, rendering Pturb even more insignificant. At first sight, it
might be thought that �P could, alternatively, be larger.
Low-luminosity red supergiants have their effective temper-
atures matched best by models with �P ¼ 2:8 (Stothers &
Chin 1997), and local fits of �P to the results of numerical
simulations of convection in the Sun have ranged from �0
near the surface up to �3 in the adiabatic interior (Kim et
al. 1996; Demarque, Guenther, & Kim 1997; Porter &
Woodward 2000). However, the important helium and iron
convection zones in the present yellow and blue supergiant
models extend over only 2–3 pressure scale heights, and
therefore we regard 1.4 as probably an upper limit for �P in
calculating vturb.

Instead of subsuming all the uncertainty about the magni-
tude of Pturb under the parameter �P, we could arbitrarily
change the value ofCturb (Rosenthal et al. 1999). Since turbu-
lence must possess some anisotropy, Cturb cannot be exactly
1/3. Part of the anisotropy arises from the expected upflows
and downflows in turbulent stellar convection zones (Li et al.
2002), which would make Cturb > 1=3, but a greater part
probably comes from the restricted vertical size of the present
supergiant convection zones, which wouldmakeCturb < 1=3.
If the star is pulsating, convection might be partly sup-
pressed, further reducing the size of the convection zones and
decreasing the effective value ofCturb.

Another legitimate question is whether vturb ¼ vconv, as
assumed. This assumption is probably a reasonable one,
judging from general arguments about turbulent flows
inside stars (Cox & Giuli 1968, pp. 288, 302) as well as from
detailed analytic models of stellar turbulence including the
full spectrum of eddy sizes (Canuto & Mazzitelli 1991) and,
especially, from detailed numerical simulations of solar
envelope convection with output velocity data fitted to the
mixing-length equations (Abbett et al. 1997; Ludwig, Frey-
tag, & Steffen 1999; Li et al. 2002). The numerical results
actually show that vturb is slightly smaller than vconv. All of
these considerations suggest that by adopting �P ¼ 1:4 and
Pturb ¼ ð1=3Þ�v2conv we have most likely overestimated the
turbulent pressure in our present stellar models.

Finally, it should not be expected that a local theory like
mixing-length theory can yield accurate values of the gra-
dient of Pturb, especially near the boundaries of the convec-
tion zone where convective overshooting must occur. In
these layers, however, Pturb is small, and so dPturb=dP must
be too.

The situation regarding turbulence is essentially identical
for our three other models of yellow hypergiants lying along
the blue edge. Since the blue edge rises more or less vertically
on the H-R diagram, changes of stellar mass and luminosity
do not lead to any alteration of our basic conclusions. Even
if the absolute locus of the blue edge’s effective temperature
remains a bit uncertain (Stothers & Chin 2001), Figure 2
shows that the peak values of vturb=vsound stay low over a
wide range of effective temperatures, 5000–20,000 K. The
effect of Pturb on the blue edge is small, increasing logTe by
less than 0.1. The net destabilizing effect has some uncer-
tainty, however, owing to the large changes of gradient,

Fig. 1.—Runs of several physical variables through the outer envelope
of a yellow hypergiant model with M=M� ¼ 21:6, logðL=L�Þ ¼ 5:802,
logTe ¼ 3:97, �P ¼ 1:4, and f =g ¼ 0. Units of the variables are either
dimensionless or cgs. The model sits on the borderline of dynamical
instability.

No. 2, 2003 YELLOW HYPERGIANTS AND LBVs 963



dPturb=dP, across the convection zone. Our approximation
of slowly adapting turbulence appears, nevertheless, to be
on safe ground since vturb=vsound is so small everywhere.

5. LUMINOUS BLUE VARIABLES AND
HYDROGEN-POOR WN STARS

As the effective temperature of a post–red-supergiant star
increases, the outer envelope mass, �M, declines sharply.
Using observed mass-loss rates for LBVs and for their close
relatives, the hydrogen-poor WN stars (assumed to be post–
red-supergiant stars), we have previously shown that f
becomes a significant fraction of g when Te > 20;000 K
(Stothers 2002a). In these models, f was included explicitly.
The consequent reduction of the effective gravity was found
to lower the Eddington luminosity limit, leading to a greater
tendency toward radiative instability as well as toward
dynamical instability.

At the same time, the approach of the outer envelope to
the Eddington limit means that the greatly reduced densities
in the deep adiabatic layers must be compensated for by
substantially increased mean turbulent velocities if convec-
tion is to carry enough flux to avoid radiative expulsion of
the outer envelope (x 1). Figure 3 displays the runs of several
physical variables inside an extreme blue supergiant model
of 21:6 M� with logTe ¼ 4:35, calculated by assuming
�P ¼ 1:4 and f =g ¼ 0:16. The run of density is found to be
even flatter than in a yellow hypergiant model, the opacity
bumps are more muted, and the ratio vturb=vsound is very
small in the helium convection zone owing to this zone’s
closeness to the stellar surface. On the other hand, very deep
in the iron convection zone, vturb=vsound shoots up to a super-
sonic value of 1.3. Since this zone is strongly convective
(essentially adiabatic), convection is able to carry all of the

flux in it without disruption of the outer envelope, as long as
pulsations do not suppress the efficiency of convection.
With a slight increase of f =g, however, convection finally
becomes an inadequate carrier, even without any pulsa-
tions, and radiative instability formally breaks out in many
of the layers of the outer envelope.

It is not possible at present to determine realistically the
true physical conditions in the supersonic iron convection
zone. First of all, the densities become so low that they fall
outside the range of the available opacity tables. Further-
more, below some value of the density, it is physically neces-
sary that � ! 0 as � ! 0, but this critical density is
unknown. Then, standard mixing-length theory, which is
very crude to begin with, fails even in concept when the
mean turbulent velocity exceeds sound velocity. It is a rea-
sonable assumption that supersonic turbulence would cre-
ate shocks, which would then rapidly dissipate the large
eddies and generate both acoustic energy and heat energy.
Cox & Giuli (1968) assumed that this process would reduce
vturb to near equality with vsound, although Deng & Xiong
(2001) argued that the smaller eddies produced by the
shocks might possess subsonic velocities. In either case, con-
vection would become less efficient, leading to a reduced
convective flux and a reduced flux of turbulent kinetic
energy. Although the turbulent pressure would also be
decreased, sound waves would help to support the convec-
tion zone against gravity. On the other hand, because stellar
envelope turbulence is of a forced nature rather than freely
decaying, a supersonic state may well be maintained, as it
apparently is in observed interstellar clouds (Larson 1979,
1981). A related problem is that the structure of strong tur-
bulence in known physical situations is not random but con-
sists, in part, of large-scale coherent features. Since these

Fig. 2.—Peak Mach number (ratio of mean turbulent velocity to
adiabatic sound velocity) in the helium convection zone and in the iron
convection zone, as a function of effective temperature. The ratios refer to
post–red-supergiant models with M=M� ¼ 21:6, logðL=L�Þ ¼ 5:802,
�P ¼ 1:4, and f =g ¼ 0.

Fig. 3.—Runs of several physical variables through the outer envelope
of an LBV model with M=M� ¼ 21:6, logðL=L�Þ ¼ 5:802, logTe ¼ 4:35,
�P ¼ 1:4, and f =g ¼ 0:16. Units of the variables are either dimensionless or
cgs. The model sits on the borderline of both radiative and dynamical
instability.
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features probably arise from the self-regulating nature of
turbulent viscosity (Stothers 2000; Canuto 2000), they are
likely to be universal and therefore present also in luminous
supergiant envelopes. For the moment, we must ignore the
iron convection zone, and we proceed to focus on the largely
radiative (or weakly convective) overlying layers.

5.1. Radiative Instability

The criterion for radiative instability, L > LE, depends
crucially on how the Eddington luminosity LE is defined.
Here we introduce the mass-loss acceleration and the turbu-
lent pressure gradient in order to generalize Eddington’s
(1921) original derivation. Division of the equation of
radiative transfer,

dPrad

dr
¼ � ��L

4�cr2
; ð16Þ

into the full hydrostatic equilibrium equation (2) for
dðPgas þ PradÞ=dr, and making the approximation
MðrÞ ¼ M, and then finally integrating the resulting
equation from the surface down to a layer at r yields

1� � ¼ h�iL
4�cGMð1�  � �Þ ; ð17Þ

where

 ¼ f

g
; � ¼ � 4�r2

g

dPturb

dMðrÞ ; ð18Þ

1

h�i ¼
1

ð1�  � �ÞPrad

Z r

R

1�  � �

�

dPrad

dr
dr : ð19Þ

Since it is necessary for radiative stability that � � 0, the
generalized Eddington luminosity must be

LE ¼ 4�cGMð1�  � �Þ
h�i : ð20Þ

The local definition of LE with h�i replaced by the local
value of � applies only if the quantities �,  , and � are all
constant in the overlying layers or if the local density and
temperature do not increase outward (Chandrasekhar 1939,
p. 221). In our blue supergiant envelope models, the nonlo-
cal definition of LE is needed because even though � is
roughly constant in the envelope and  has been taken to be
constant there, a density inversion occurs in the weakly con-
vective helium convection zone. This inversion is due to a
small opacity bump arising from second helium ionization.
The effect on LE of the turbulent pressure in this zone is
slight, however, for the following reason. In the layers with
maximum turbulent pressure, the ratio vturb=vsound has a
vanishing gradient. Therefore, the quantity � is not only
maximal but also locally constant. Consequently, the
effective gravity ratio is a minimum,

1�  � � ¼ 1� fg�1

1þ �
: ð21Þ

In the model of Figure 3, � � 10�2, which is negligible in
magnitude compared to unity. For our other extreme blue
supergiant models, similar results for � in the helium
convection zone are found.

Throughout the tenuous envelopes of our most extreme
models, LE remains very close to L, a value that is fixed

essentially by the underlying mass of the star. Above the
iron convection zone, we find that radiative instability is
controlled chiefly by the value of  . Under the assumption
of constant  , it has previously been possible to derive for
any stellar envelope model a critical value of  for which
L ¼ LE (Stothers 2002a). The originally derived values of  
are now found to remain approximately valid even when
turbulent pressure is included in the models.

Owing to the presence of a supersonic turbulent pressure
in the iron convection zone, however, the models with LE

very close to L are not very securely established. If radiative
instability in such models is governed largely by conditions
inside the iron convection zone, instability could break out
there while the overlying layers still have LE well above L.
In that case, the mass-loss rate inferred from equation (15)
applied to the overlying layers might be too large. It then
becomes possible, in theory, that supersonic turbulence in
the iron convection zone could drive off the outer envelope
without needing any help at all from the superincumbent
layers.

5.2. Dynamical Instability

To test the model envelopes for dynamical instability,
two different turbulent scenarios—slowly adapting turbu-
lence in the helium convection zone and rapidly adapting
turbulence in the iron convection zone—have been consid-
ered. After equations (2) and either (6)–(8) or (12)–(14) have
been applied, only insignificant changes from our earlier
results without turbulent pressure are obtained. There are
two reasons for this.

First, the part of the envelope contributing most to the
determination of dynamical stability or instability consists
of the cooler layers situated above the iron convection zone,
where the displacement amplitude �r=r is large enough to be
significant. This result can be understood by examining an
approximate form of the instability criterion �2 � 0, which
becomes exact if �r=r ¼ constant and 1�  � � ¼ constant
(Stothers 1999):

h�1i ¼
RR
r� �1Pdðr3ÞRR

r� Pdðr3Þ
� 4

3
: ð22Þ

In this expression r� refers to the base of the outer envelope.
Assuming an envelope of uniform density, integration of
the equation of hydrostatic equilibrium yields P �
GM�ð1�  � �Þ=r in layers well below the photosphere,
whence Pdðr3Þ � ð3=2ÞGM�ð1�  � �Þ dðr2Þ. Consequent-
ly, the weighting factor for �1 at great depth is proportional
to the local surface area, which becomes very small when r�
is reached since r�5R. In our envelope models, the weight-
ing factor is found to be negligible for temperatures higher
than 1� 105 K (Fig. 3), and so the large turbulent
pressure in the iron convection zone has little effect on the
determination of dynamical stability of the envelope.

The second reason why turbulent pressure is ineffectual in
our models is that in the convective layers where �r=r is
largest—specifically, in the helium convection zone that
extends from the surface down to the layers with
T � 4� 104 K—the turbulent pressure remains very small.

When the iron convection zone is not included in the cal-
culations, the effect of the helium convection zone is one of a
slight destabilization. On the other hand, the iron convec-
tion zone itself tends to slightly stabilize the envelope by
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raising the local value of �1 modified to include turbulent
pressure, viz.,

�1 ¼
32þ 40� þ 5�2

24þ 27� þ 3�2
; ð23Þ

which applies whenever �5 1 (Stothers 2002b). These con-
clusions are quite general for our models of LBVs. Quanti-
tatively, the net effect of the turbulent pressure turns out to
be rather variable but is always so small that it can be easily
canceled by a minor change of f =g (<20%).

It seems almost superfluous to worry about Pturb in a con-
sideration of dynamical instability for these stars. The
observational uncertainty of dM=dt is probably a factor of
�2 (Vink & de Koter 2002), which translates into an uncer-
tainty of a factor of 4 in f =g, according to equation (15).
This circumstance is why we have, instead, approached the
problem purely theoretically, by finding the value of f =g
that leads to marginal dynamical instability and, from this,
predicting the value of dM=dt (Stothers 2002a). Since the
models are so sensitive to f =g owing to their closeness to the
Eddington limit, other factors such as turbulent pressure
become much less important in comparison. The rapid
change of the predicted values of dM=dt with effective tem-
perature ensures that a comparison with the observed values
of dM=dt, despite observational errors, results in a well-
determined estimate of the critical effective temperature for
dynamical instability.

6. CONCLUSION

Despite the fact that convective instability is widespread
in the envelopes of luminous post–red-supergiant stars, the
layers above the iron convection zone possess such low den-
sities that radiative equilibrium prevails to a very close
approximation. Furthermore, turbulent pressure in the
hydrogen and helium convection zones turns out to be not
as high as one might have expected on the basis of the
initially anticipated large turbulent velocities there.

The iron convection zone, on the other hand, is deep
enough to be nearly adiabatic and to be capable of generat-
ing large turbulent velocities. However, its great depth puts
it below the layers where the question of dynamical stability
or instability of the envelope is decided on the basis of the
partial ionizations of hydrogen and helium. Moreover, its
convective flows are probably able to transport all of the
super-Eddington luminous flux, so that the question of radi-
ative stability or instability of the envelope is most likely
determined by the overlying, nearly radiative layers. This
last conclusion, however, may not apply in the case of the
bluest supergiants, because for them, turbulence near the
bottom of the iron convection zone becomes supersonic,
with very uncertain consequences. The cause of these
remarkably high turbulent velocities is the need to transport
a large convective flux in the presence of very low mass
densities.

In general, by reducing the star’s effective gravity, turbu-
lent pressure tends to destabilize the envelope both radia-
tively and dynamically, especially if turbulence adapts only
slowly to an imposed perturbation, but in all of our models
except for the bluest ones, the effects of the turbulent
pressure turn out to be very slight.

The major domains of dynamical instability on the H-R
diagram that we published earlier for post–red-supergiant

stars (Stothers & Chin 2001; Stothers 2002a) remain essen-
tially valid as calculated. They are indicated here, schemati-
cally, in Figure 4 as the gray areas. The cool edge of the
predicted LBV domain is determined by comparing the pre-
dicted rates of mass loss with the observed rates of mass
loss, as discussed elsewhere (Stothers 2002a); turbulent pres-
sure has a comparatively negligible effect on this cool edge.
Turbulence, however, increases logTe of the hot edge of the
predicted yellow hypergiant domain by a small amount, but
this shift is less than 0.1. Referring further to the figure, hot
stars with logðL=L�Þ > 6:0 are found to be both dynami-
cally and radiatively unstable, although our hydrostatic cal-
culations are probably unreliable at such high luminosities;
stars with logTe > 4:5 cannot be dynamically unstable,
owing to an absence of hydrogen and helium ionization
zones, but may be radiatively unstable; and stars with
logðL=L�Þ < 5:4 also cannot be dynamically unstable,
because their L=M ratios are too low. The most luminous
stars of all are always blue and never reach the ‘‘ forbidden
zone ’’ on the H-R diagram (Stothers & Chin 1999).

Superposed on Figure 4 are the observed locations of
massive unstable post–main-sequence stars belonging to the
Galaxy, M33, and the Large Magellanic Cloud, drawn pri-
marily from the catalogs of de Jager (1998) and van Gen-
deren (2001). The central void is real—a consequence of
rapid evolution in this region (de Jager et al. 2001). Agree-
ment with our theoretical predictions is seen to be close.
Other points of agreement have been similarly pointed out
in regard to the stellar masses, surface H andN abundances,
mass-loss rates, instability cycles, and the luminosity func-
tion (Stothers & Chin 1996; Stothers 2002a) and need not be
repeated here. We note only that the mass-loss rates in the
models have been taken to be free parameters and have not
been calculated hydrodynamically (as indeed they cannot

Fig. 4.—H-R diagram showing the theoretically predicted domains of
dynamical instability for yellow hypergiants and for LBVs. Symbols denote
individual observed stars: yellow hypergiants (dots connected by dashed
lines) and LBVs at quiescence (single dots). The observations come from
de Jager (1998) and vanGenderen (2001).
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yet be). We stress that no other free parameters of any
significance exist in our theory.

Although turbulence may not have much of an effect on
the outer envelopes of yellow hypergiants and of most LBVs
(except for the bluest ones), this insignificance is emphati-
cally not true of the dynamically active atmospheres of these
stars (Nieuwenhuijzen & de Jager 1995; de Jager 1998; de
Jager et al. 2001). The key, therefore, to unlocking the whole
instability phenomenon will probably lie in a combined
calculation of the turbulent atmosphere and the turbulent

outer envelope in a realistic numerical simulation of the
massive outflowing envelope.

It is a pleasure to thank V. M. Canuto for discussions of
optically thick turbulent flows and C. de Jager for corre-
spondence on the subject of optically thin turbulent atmo-
spheres and for useful suggestions on this paper. The
anonymous referee also supplied many astute suggestions
for clarifications of various points.
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